Hackathon on Lightweight IoT Security Project Pitches

Paris, France | 21-22 May 2024

parishackathon.lakewq.orq

Crypto agility in lakers

- lakers is an implementation of EDHOC (RFC 9528) in Rust
 - https://github.com/openwsn-berkeley/lakers
- right now, it supports:
 - O Cipher Suite 2 (AES-CCM-16-64-128, SHA-256, 8, P-256, ES256, AES-CCM-16-64-128, SHA-256)
 - Authentication mode Static-Static
- the plan is to add support for more cipher suites and authentication methods

Project champion

Geovane Fedrecheski

Porting lakers to Single-Chip µicro Motes (SCµM)

- lakers: implementation of EDHOC dedicated for resource-constrained devices
 - https://github.com/openwsn-berkeley/lakers
- SCuM: crystal-free, 2x3 mm2 single-die solution for wireless sensor networks
 - integrating sensing, computation and communication capabilities
 - 802.15.4 compatible transceiver
 - https://github.com/PisterLab/scum-test-code
- Hackathon plan: exploring the feasibility of executing an authenticated key exchange between SCµM and nRF52840-DK

Project champion

Sara Faour

RIOT-rs: Integrating CoRE security

- RIOT-rs: Rust based embedded OS based on 10 years C experience in RIOT
 - https://github.com/future-proof-iot/RIOT-rs
- 2024 goal: Networking "Hello World" should have security enabled out of the box without loss of usability.
- Components: embassy (asynchronous framework), embedded Rust network abstraction, CoAP server, libOSCORE, Lakers, maybe a tiny ACE AS

Hackathon plan: interop, enhance, explore

Project champions

- Christian Amsüss
- Kaspar Schleiser

Interop testing of EDHOC

Geovane supports:

• Message flow: TBD

Roles: TBD

Cipher suites: TBD

Auth. methods: TBD

Auth cred: TBD

Auth cred id: TBD

OSCORF use: TBD

• Combined request [1]: TBD

Marco supports:

- Message flow: Forward
- · Roles: Initiator, Responder
- Cipher suites: 0, 1, 2, 3
- Auth. methods: 0, 1, 2, 3
- Auth cred: CCS, X.509
- Auth cred id: CCS. x5chain. x5t. x5u. kid
- OSCORF use: Yes.
- Combined request [1]: Yes

Mališa supports:

- Message flow: TBD
- Roles: TBD
- Cipher suites: TBD
- Auth. methods: TBD
- Auth cred: TBD
- · Auth cred id: TBD
- OSCORE use: TBD
- Combined request [1]: TBD

Christian supports:

- · Message flow: Forward
- · Roles: I. R.
- · Cipher suites: 2
- Auth. methods: 3
- Auth cred: CCS (or anything preconfigured)
- Auth cred id: short kid, by-value
- OSCORF use: Yes.
- Combined request [1]: Only

Stefan supports:

- Message flow: TBD
- Roles: TBD
- Cipher suites: TBD
- Auth. methods: TBD
- Auth cred: TBD
- Auth cred id: TBD
- OSCORF use: TBD
- Combined request [1]: TBD

Implementation is a mix of Rust and Python; both using Lakers.

- Geovane Fedrecheski
- Marco Tiloca
- Mališa Vučinić
- Christian Amsüss
- Stefan Hristozov

Project champions

EDHOC and OSCORE profile of the ACE framework

- Building on Eclipse Californium, with CoAP (RFC 7252) and OSCORE (RFC 8613) ...
- Implementation of ACE-OAuth Framework (RFC 9200) and its OSCORE profile (RFC 9203)
 - https://bitbucket.org/marco-tiloca-sics/ace-java/src/master/
- Implementation of the authenticated key establishment protocol EDHOC (RFC 9528)
 - https://github.com/rikard-sics/californium/tree/edhoc
- Goal: implement the EDHOC and OSCORE profile of ACE
 - https://datatracker.ietf.org/doc/draft-ietf-ace-edhoc-oscore-profile/
 - Development branch: https://bitbucket.org/marco-tiloca-sics/ace-java/src/edhoc-oscore-profile/
 - Starting from a setup with the OSCORE profile:
 - Set a node to be both ACE Client and EDHOC Initiator
 - Set a node to be both ACE Resource Server and EDHOC Responder
 - Morph the OSCORE profile into the EDHOC and OSCORE profile

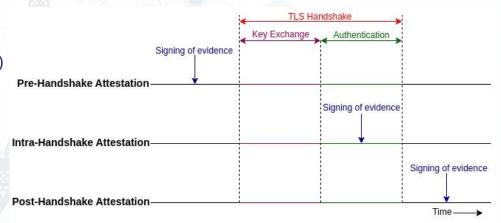
Project champion: Marco Tiloca

Interop testing of EAP-EDHOC

- Project champions
- Rafa Marin-Lopez
- Dan Garcia-Carrillo

- Developing & Testing EAP-EDHOC implementations
 - UM and UNIOVI's (so far)
- Need for an agreement in a common EDHOC implementation (or interoperable)
 - uoscore-uedhoc implementation (UM's version 3.0.2)
- UM implementation
 - EAP peer: wpa_supplicant 2.10 or 2.11-dev (also supports EAP-TLS (v1.3))
 - EAP authenticator: hostapd 2.10 or 2.11-dev
 - EAP server: Freeradius 3.2.3
- UNIOVI implementation
 - EAP peer and authenticator: OpenPANA 0.2.4
 - EAP server: FreeRADIUS 3.2.1
- Interop plan:
 - UM EAP peer and authenticator (wpa_supplicant/hostapd) and UNIOVI's EAP server (FreeRADIUS)
 - UNIOVI's EAP peer and authenticator (OpenPANA) and UM's EAP server (FreeRADIUS)

Formal Verification of Attested TLS


- 3 main ways to combine attestation in TLS (Background-check model)
- 1. Pre-handshake attestation (Overview slides)
- 2. Intra-handshake attestation (IETF draft)
- Post-handshake attestation (Project proposal)

Background on Attestation

- Formal Specs
- Formal analysis artifacts repo

Hackathon plan

- Make progress on open issues
- Flexible to adapt to interests of participants

Project champion

Muhammad Usama Sardar

Constrained BRSKI (cBRSKI) Onboarding for Thread devices

- Preparing for cBRSKI testing in Thread mesh networks: use the simulator!
- Around day 2, virtual Thread nodes should be able to connect with external UDP clients & servers: this simulates apps/protocols on the node.
- Code: release https://github.com/EskoDijk/ot-ns/
 Hackathon branch: https://github.com/EskoDijk/ot-ns/tree/pr-ccm

Securing IoT Data Fabric

- IoT Data Fabric explores how 6G networks can provide secure and scalable
 data-oriented communication capabilities
- First PoC implemented and available at hackathon as cloud service
 - Focusing on connecting data providers and consumers
 - Using CoAP and Wasm to enable distribution and isolation with lightweight implementations
 (OSCORE, ACE, EDHOC, TEEs with RATs, etc. on agenda)
 - Using many IoT IETF techs at development: CoAP pub/sub, SDF, SenML, etc.

Project champion

Ari Keränen

Hackathon on Lightweight IoT Security Side Meetings

Paris, France | 21-22 May 2024

parishackathon.lakewq.orq

Meeting: T2TRG Interim Meeting

When: Tue 17:00-18:50 Where: Room A115

IoT security implementation, operation, and systems aspects

17:00	Chairs	Intro
17:10	Rajat Kandoi / Ari Keränen	Secure In-network Data Fabric for IoT applications
17:27	Abhishek Kumar	How can AI be distributed in the computing continuum? Introducing the neural pub/sub paradigm
17:44	Renzo Navas	Post-Quantum Cryptography: Overview and IoT Standardisation Perspectives
18:01	Marco Tiloca	Distribution of Software Updates with End-to-End Secure Group Communication for CoAP
18:18	Rikard Höglund	Using onion routing with CoAP
18:35	Chairs	Wrapup

Meeting: lake-authz and link layer technologies

- one use case of lake-authz is network join
- lake-authz will be more useful if it can be used in several link layer technologies
 - o some technologies are easier to integrate, some are harder
 - most already provide a join procedure
- guiding questions:
 - o how to integrate lake-authz in different link layer technologies?
 - o which technologies are easier/harder to integrate?
 - which technologies' join procedure can be improved by lake-authz? and how?
 - is there something in the draft we could do to make it easier?

When: **Wed**, **16:15**

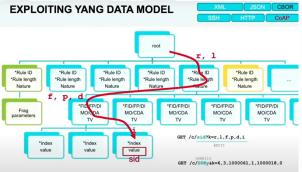
Where: Room A115

Meeting: Interactive tutorial: Towards formal verification of attested TLS

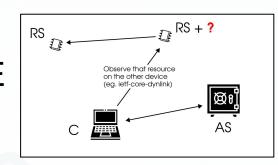
- Overview of attestation
 - RATS architecture
- Overview of TLS
- Overview of attested TLS
- Intro to formal verification
- Formal verification of attested TLS
 - RA-TLS in RATS background-check model
- Intention is:
 - To share our "attested TLS" journey to help "attestation over EDHOC" ID make progress by learning the design concepts

When: Tue, 09:45 Where: Breakout

Room


Meeting: Secure Application Performance Management (APM) using CORECONE

When: Tue, 13:30


Where: Room A115

- What state-of-the-art implementations of CORECONF do exist?
 - "CoMI had little use because its specification was still under draft, and no open-source implementations existed at the time. Since Sinche et al.'s survey, CoMI was renamed to CORECONF and its working group have a GitHub project which does not appear to be ready for production use" <u>A Proposal and Experimental</u>
 Evaluation Towards Mass Configuration of Heterogeneous IIoT Nodes
 - Use of CORECONF in Static Context Header Compression (SCHC) YouTube Recording of Future IoT School
 in Berlin, 2022

 EXPLOITING YANG DATA MODEL
 - Python CORECONF Library <u>pycoreconf</u> <u>Github Link</u>
- Discussion about how CORECONF can be used in APM
 - Collecting Ideas for Use-Cases
 - Implementation hints for an implementation in C on a MCU
 - Security Aspects of CORECONF

Meeting: Machine-to-machine setup in ACE or: "Components we are missing for RIOT-rs"

In ACE, usually our devices are RS.

which action to take?

CoAP affords low-cost device to device communication, and sometimes one device takes a client role.
 How is this best expressed in the ACE context?
 Should all our devices enroll as a Client at the AS?
 Can we "just" send them a token to use along with the URI when we configure

Details: https://github.com/future-proof-iot/RIOT-rs/issues/245

Hackathon on Lightweight IoT Security

Paris, France | 21-22 May 2024

parishackathon.lakewq.orq

